206 research outputs found

    Disability in multiple sclerosis is related to thalamic connectivity and cortical network atrophy.

    Get PDF
    BACKGROUND: Thalamic atrophy is proposed to be a major predictor of disability progression in multiple sclerosis (MS), while thalamic function remains understudied. OBJECTIVES: To study how thalamic functional connectivity (FC) is related to disability and thalamic or cortical network atrophy in two large MS cohorts. METHODS: Structural and resting-state functional magnetic resonance imaging (fMRI) was obtained in 673 subjects from Amsterdam (MS: N = 332, healthy controls (HC): N = 96) and Graz (MS: N = 180, HC: N = 65) with comparable protocols, including disability measurements in MS (Expanded Disability Status Scale, EDSS). Atrophy was measured for the thalamus and seven well-recognized resting-state networks. Static and dynamic thalamic FC with these networks was correlated with disability. Significant correlates were included in a backward multivariate regression model. RESULTS: Disability was most strongly related (adjusted R2 = 0.57, p < 0.001) to higher age, a progressive phenotype, thalamic atrophy and increased static thalamic FC with the sensorimotor network (SMN). Static thalamus-SMN FC was significantly higher in patients with high disability (EDSS ⩾ 4) and related to network atrophy but not thalamic atrophy or lesion volumes. CONCLUSION: The severity of disability in MS was related to increased static thalamic FC with the SMN. Thalamic FC changes were only related to cortical network atrophy, but not to thalamic atrophy

    Orbital Angular Momentum Parton Distributions in Light-Front Dynamics

    Full text link
    We study the quark angular momentum distribution in the nucleon within a light-front covariant quark model. Special emphasis is put into the orbital angular momentum: a quantity which is very sensitive to the relativistic treatment of the spin in a light-front dynamical approach. Discrepancies with the predictions of the low-energy traditional quark models where relativistic spin effects are neglected, are visible also after perturbative evolution to higher momentum scales. Orbital angular momentum distributions and their contribution to the spin sum rule are calculated for different phenomenological mass operators and compared with the results of the MIT bag model.Comment: 14 pages; latex; 3 ps figure

    A Semiautomatic Method for Multiple Sclerosis Lesion Segmentation on Dual-Echo MR Imaging: Application in a Multicenter Context

    Get PDF
    BACKGROUND AND PURPOSE: The automatic segmentation of MS lesions could reduce time required for image processing together with inter- and intraoperator variability for research and clinical trials. A multicenter validation of a proposed semiautomatic method for hyperintense MS lesion segmentation on dual-echo MR imaging is presented. MATERIALS AND METHODS: The classification technique used is based on a region-growing approach starting from manual lesion identification by an expert observer with a final segmentation-refinement step. The method was validated in a cohort of 52 patients with relapsing-remitting MS, with dual-echo images acquired in 6 different European centers. RESULTS: We found a mathematic expression that made the optimization of the method independent of the need for a training dataset. The automatic segmentation was in good agreement with the manual segmentation (dice similarity coefficient = 0.62 and root mean square error = 2 mL). Assessment of the segmentation errors showed no significant differences in algorithm performance between the different MR scanner manufacturers (P > .05). CONCLUSIONS: The method proved to be robust, and no center-specific training of the algorithm was required, offering the possibility for application in a clinical setting. Adoption of the method should lead to improved reliability and less operator time required for image analysis in research and clinical trials in MS

    Grey-matter network disintegration as predictor of cognitive and motor function with aging

    Get PDF
    Loss of grey-matter volume with advancing age affects the entire cortex. It has been suggested that atrophy occurs in a network-dependent manner with advancing age rather than in independent brain areas. The relationship between networks of structural covariance (SCN) disintegration and cognitive functioning during normal aging is not fully explored. We, therefore, aimed to (1) identify networks that lose GM integrity with advancing age, (2) investigate if age-related impairment of integrity in GM networks associates with cognitive function and decreasing fine motor skills (FMS), and (3) examine if GM disintegration is a mediator between age and cognition and FMS. T1-weighted scans of n = 257 participants (age range: 20–87) were used to identify GM networks using independent component analysis. Random forest analysis was implemented to examine the importance of network integrity as predictors of memory, executive functions, and FMS. The associations between GM disintegration, age and cognitive performance, and FMS were assessed using mediation analyses. Advancing age was associated with decreasing cognitive performance and FMS. Fourteen of 20 GM networks showed integrity changes with advancing age. Next to age and education, eight networks (fronto-parietal, fronto-occipital, temporal, limbic, secondary somatosensory, cuneal, sensorimotor network, and a cerebellar network) showed an association with cognition and FMS (up to 15.08%). GM networks partially mediated the effect between age and cognition and age and FMS. We confirm an age-related decline in cognitive functioning and FMS in non-demented community-dwelling subjects and showed that aging selectively affects the integrity of GM networks. The negative effect of age on cognition and FMS is associated with distinct GM networks and is partly mediated by their disintegration.Multivariate analysis of psychological dat

    Diffusion-Weighted Imaging and Cognition in the Leukoariosis and Disability in the Elderly Study

    Get PDF
    BACKGROUND AND PURPOSE-: The mechanisms by which leukoariosis impacts on clinical and cognitive functions are not yet fully understood. We hypothesized that ultrastructural abnormalities of the normal-appearing brain tissue (NABT) assessed by diffusion-weighted imaging played a major and independent role. METHODS-: In addition to a comprehensive clinical, neuropsychologic, and imaging work-up, diffusion-weighted imaging was performed in 340 participants of the multicenter leukoariosis and disability study examining the impact of white matter hyperintensities (WMH) on 65-to 85-year old individuals without previous disability. WMH severity was rated according to the Fazekas score. Multivariate regression analysis served to assess correlations of histogram metrics of the apparent diffusion coefficient (ADC) of whole-brain tissue, NABT, and of the mean ADC of WMH with cognitive functions. RESULTS-: Increasing WMH scores were associated with a higher frequency of hypertension, a greater WMH volume, more brain atrophy, worse overall cognitive performance, and changes in ADC. We found strong associations between the peak height of the ADC histogram of whole-brain tissue and NABT with memory performance, executive dysfunction, and speed, which remained after adjustment for WMH lesion volume and brain atrophy and were consistent among centers. No such association was seen with the mean ADC of WMH. CONCLUSIONS-: Ultrastructural abnormalities of NABT increase with WMH severity and have a strong and independent effect on cognitive functions, whereas diffusion-weighted imaging metrics within WMH have no direct impact. This should be considered when defining outcome measures for trials that attempt to ameliorate the consequences of WMH progression

    Nucleon structure functions and light front dynamics

    Get PDF
    We present a quark-parton model to describe polarized and unpolarized nucleon structure functions. The twist-two matrix elements for the QCD evolution analysis of lepton-hadron scattering are calculated within a light-front covariant quark model. The relativistic effects in the three-body wave function are discussed for both the polarized and unpolarized cases. Predictions are given for the polarized gluon distributions as will be seen in future experiments

    Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis

    Get PDF
    Quantitative MRI provides biophysical measures of the microstructural integrity of the CNS, which can be compared across CNS regions, patients, and centres. In patients with multiple sclerosis, quantitative MRI techniques such as relaxometry, myelin imaging, magnetization transfer, diffusion MRI, quantitative susceptibility mapping, and perfusion MRI, complement conventional MRI techniques by providing insight into disease mechanisms. These include: (i) presence and extent of diffuse damage in CNS tissue outside lesions (normal-appearing tissue); (ii) heterogeneity of damage and repair in focal lesions; and (iii) specific damage to CNS tissue components. This review summarizes recent technical advances in quantitative MRI, existing pathological validation of quantitative MRI techniques, and emerging applications of quantitative MRI to patients with multiple sclerosis in both research and clinical settings. The current level of clinical maturity of each quantitative MRI technique, especially regarding its integration into clinical routine, is discussed. We aim to provide a better understanding of how quantitative MRI may help clinical practice by improving stratification of patients with multiple sclerosis, and assessment of disease progression, and evaluation of treatment response

    Manual and automated tissue segmentation confirm the impact of thalamus atrophy on cognition in multiple sclerosis: A multicenter study

    Get PDF
    Background and rationale: Thalamus atrophy has been linked to cognitive decline in multiple sclerosis (MS) using various segmentation methods. We investigated the consistency of the association between thalamus volume and cognition in MS for two common automated segmentation approaches, as well as fully manual outlining. Methods: Standardized neuropsychological assessment and 3-Tesla 3D-T1-weighted brain MRI were collected (multi-center) from 57 MS patients and 17 healthy controls. Thalamus segmentations were generated manually and using five automated methods. Agreement between the algorithms and manual outlines was assessed with Bland-Altman plots; linear regression assessed the presence of proportional bias. The effect of segmentation method on the separation of cognitively impaired (CI) and preserved (CP) patients was investigated through Generalized Estimating Equations; associations with cognitive measures were investigated using linear mixed models, for each method and vendor. Results: In smaller thalami, automated methods systematically overestimated volumes compared to manual segmentations [ρ=(-0.42)-(-0.76); p-values < 0.001). All methods significantly distinguished CI from CP MS patients, except manual outlines of the left thalamus (p = 0.23). Poorer global neuropsychological test performance was significantly associated with smaller thalamus volumes bilaterally using all methods. Vendor significantly affected the findings. Conclusion: Automated and manual thalamus segmentation consistently demonstrated an association between thalamus atrophy and cognitive impairment in MS. However, a proportional bias in smaller thalami and choice of MRI acquisition system might impact the effect size of these findings
    corecore